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3.0 FURTHER TOPICS IN BOOTSTRAPPING
3.1 Introduction

There is much more tdootstrapping han can be covered here. The
book by Efron and Tibishirani (1993) provides adetailed reference. Some
useful further features are given here, and additional examples appear in
subsequent chapters.

3.2 Estimates of bias

Bootstrapping provides a handyway to check for bias in anestimate.
Suppose we calculate some statistic, such as the variance, freet af data. We
would like that statistic toprovide an unkdsed estimate ofhe true parameter,

o2. If we represent the statistic that we intend to calculate from the dafh as
s(x), where x is the vector of observeddata, X, X2, ..., X3 and sk) is some

function of that data, hen we would like to have the expected value othat

function to be ﬁ) =E[s(x)] =6 = 6. When the theoretical distribution of the
estimator is known orassumed to be&known, then anunbiased estimator can
often by found by the methods of mthematical statistics, i.e., we can find the
expected value of arial statistic directly. Thus we know that the sample
variance:

3 (Xj- X)2
g = n-1

of eq. (1.3). In this caseé\ = sx) = & (the notationcan be a little confusing, as
we use the notation s] to representany statistic calculated from adata set,x,
whereas s isalso commonly used torepresent aspecific quantity, the sample
estimate of the standard deviation).

has expected value E®& =02 for the normal dstribution

Very often we are not sue what theoretical distribution may be
appropriate for an observed sample, and it isfrequently true that there may
not be any such distribution. Statisticians thus spend a toof time trying to
choose the'right" distribution or maniplating (transforming) the data to
approximate some known distribution. Bootstrapping can avoid a lot ofthat
trouble and uncertainty. In this section we consider hbwotstrapping can be
used to check for bias in an estimator. We define bias as:

biag- = Er[s(x)] - t(F) (3.1)

where the subscript Fserves as aeminder that the bas and expectation are
taken with respect to somerobability distribution function Kquite likely an
unknown distribution), andé = t(F) denotes our statistic ascalculated from the
true probability distribution. The bootstrap estimate of bias is calculated as:

biagg =8 *(+) - td) (3.2)

where @*(-) is the mean ofour estimator calculatedfrom a large number of

bootstrap samples, and AtQHs the sameestimator calculatedfrom the original
data.
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Example 3.1. A nunerical exanple froma normal distribution nmay help fix
ideas at this point. The following 10 "observations" are from a nornal
di stribution with nmean zero:

1. 6718, -3. 061, 0. 9338, 2. 8766, - 1. 248, 2. 6206, 0. 3212, - 1. 121, 0. 0475, 1. 7129

Consi der estinmating the variance of these observations from

= (xj- X)?

2 - (3.3)

This is the equation for variance often used by engi neers, and produced
by sone of the earlier pocket calculators. If we apply the fornula to

the 10 original observations it gives t(f) = 3.177. Now calculate the

average of 2,000 bootstraps using this estimator. This gives @*(-) =
2.799,and we get:

biags =B *(+) - td) =2.799 - 3.177 = -0.378,

a negative bias, suggesting that we have an underestinmate. From theory,
we know that an unbi ased estinator cones from
S(xj- X)?2
n-1
whi ch gives us s2 = 3.530 from the above data set. Qur bias estimate is

negative, neaning that we underestinmate the true quantity. W could thus
add this quantity, 0.378, to our underestimate from the original data,

t(ﬁ) = 3.177, getting an inproved estinate (3.555). It is perhaps
better to define a bias-corrected estinator

s2 =

g=0+[B -6*)]=28 -6+-) =2(3.177) - 2.799 = 3.555 (3.4)
which gives the sane result. This is close to the result (3.530) one
. . S(xi- 2% .
would get by using the proper equation s2 = e in the first

pl ace. The point here is that we often don't know what the proper
equation is, and the bootstrap provides a way to check for bias in
what ever equation we do have available to estimate sonme quantity. Eq.
(3.4) canme very close to the correct answer in this exanple, but in
practice, if we have indications of an inportant bias, sinply correcting
by eq.(3.4) may not necessarily inprove the situation. The estimator my
be subject to a great deal of variability, so that the adjustment my
not help. The essential conclusion here, is that if the bootstrap
indicates small bias and snmall standard error, then we can be very
confortable indeed wth our estimator, even if we don't have a
theoretical nodel. Note that this result cane out very close to the
expected answer just by chance; repeating it gives a snaller bias, as
will likely be evident in Exercise 3.10.1.

3.3 An improved bias estimate

Efron and Tibishirani (1993:Ch. 10) recommend an improvedbias
estimate that converges onthe asymptotic estimatewith a smaller bootstrap
sample, B.They define aresampling vector for each bootstrap sample that
contains the proportions of that bootstrap sample calculated from the
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frequencies Wwh which the individual entries are observed. Thus in Fig. 2.1,
the original data set was:

1 2 3 4 5 6 7 8 9 10
13 106 203 131 160 8 67 61 11 301

and the resampling vector for the first bootstrap sample of Fig. 2.1 would be:
0 0.4 0.2 0 0.2 0.1 0 0 0 0.1

that is, 13 doesn't appear atall, but 106 appears 4 tims, and so onThey then
average these Bresampling vectors, obtaining a final vector with the

proportions averagedver all B vectors, denoted aF * and usethis instead of
t(F ) in eq.(3.2), obtaining,

brasg = 6 *(*) - T(P ¥ (3.5)
Exanple 3.2 W can illustrate the inproved bias correction by using the
original data of Exanple 3.1, but using B = 500. The proportions of P *
will add to unity and T(P*) is then calculated as a weighted variance
using the proportions of P*as weights(w). The weighted nean is Xy=

SWi(Xi- Xw)2

>WijXj,and the variance is calculated as L= = Arun with B =

500 gave biasg = ) *(«)-T(P* =2.910 - 3.223 =-0313 and bi as-corrected
estimate of s2 is then 3.536, which is very close to the result (3.530)
obt ai ned by dividing by n-1, as should be done in practice. | would be
inclined to use this approach on conplicated probl ems, where
boot st rapping uses a fair bit of conmputer tine. Otherw se, one can
simply use a sizable number (say 2,000) of bootstraps as in Exanple 3.1
inasmuch as it is likely that percentile confidence limts will be also
be calculated in a practical exanple--here we know the “right” answer
(i.e., divide by n-1) fromtheory.

3.4 Cross-validation

Models applied to ecological data may serve various purposes, but the
more important uses may be to see how well wederstand the data,and to
make predictions. One of the earliest approaches to evaluatingpredictions
from amodel isvery simple. One develops and fits the model onrhalf of the
available data, and then tests its predictions on d¢lieer half. Using all of the
data for development and testing invariably results in underestimating the
prediction errors. Wh the increased computingpower now available, models
can be fit tovarious subsets ofthe data andtested on theremainder. The
logical outcome appears to be fitting the model toall but one of the
observations, making a prediction for the remaining observation and
repeating the process for all n observations, getting n predictions and
deviations from predicted value. The variance is then calculated as:
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CVE=1 T (i~ )2 (3.6)

where "y_i denotes @aredicted value based onall of the observations exept

the ith value, and the summation runsfrom 1 to n. One thus deletes one
observation, fits the model, andmakes aprediction for the missing value,
doing this n times to calculate the cross-validation error, CVE.

Exampl e 3.3 Cross-validation error. To denobnstrate the cross-validation
i dea, we use a larger set of regression data (n = 30). The data are as
fol | ows:

No. X y No. X y

1 14.48 18.30 16 10.00 17.60
2 22,49 19.98 17 20.06 19.33
3 19.71 18.51 18 9.70 17.89
4 29.89 21.00 19 26.86 20.79
5 30.01 21.00 20 34.23 20.36
6 21.61 19.77 21 27.53 20.65
7 16.71 18.77 22 19.88 18.82
8 26.78 20.26 23 21.99 19.26
9 17.85 18.70 24 21.09 20.02
10 33.04 20.25 25 28.68 20.38
11 18.92 18.66 26 21.91 19.61
12 20.23 18.45 27 28.50 20.45
13 28.24 20.60 28 20.01 18.93
14 29.77 21.10 29 17.62 19.09
15 22.92 19.24 30 22.90 19.87

Applying cross-validation is sinple in this case, with the only
difficulty being one of arranging to drop each observation in turn W
then can conpute CVE from eq.(3.6), which turns out to be 0.201. Note

that the values of 9 r in eq. (3.6) are conputed from individual

regressi ons dropping the ith point, and yj is the y-value of the ith
observation. For conparison the value of the variance about regression
(eq.(2.5)) is 0.182. This is sonewhat smaller, as mght be expected
because the deviations fromregression are froma normal distribution in
this exanple, and thus the normal -theory nodel gives the best estinmate.
Cross-validation would be wused only in the absence of suitable
theoretical estimators for the nodel paraneters.

3.5. Bootstrapping for predictions. According to Efron and Tibishirani
(1993:Chap. 17) bootstrapping offers an alternative to cross-validation.They
focus onestimating the variance (in this example, variance about regression
as given by eq. (2.5)). There are two stages in the bootstrapping approach. The
first is to obtain bootstrap samples from the data set(given in Example 3.3),
calculate regressionlines for each bootstrap sample, and calculate avariance

about each suchregression (eq.(2.5)) using the original data set as pand vyj;



3.5

values. The second stage is toalculate the variance about regression for the
bootstrap sample now usingonly the bootstrap sample (the yj* values). Thus,

two variances about regression are calculated from the same regression
equation, using thefollowing variances (the regression coefficients are those
calculated on the bootstrap data in both cases):

— o *\\2
oo Ii-@rbx)’ o ZOi" - @+ by
n-2 n - 2

Often, the variance about regression obtained from the bootssmapple
will be appreciably smaller tharihat obtainedfrom the original data; and it is
the mean difference ofthese twovariances that issought here. Afew values
from bootstrapping follow:

Bootstrap no. Variance about Variance about Difference

regression regression

using orig. using bootstrap

data for y values of y

and x and x
1 0.1786 0.1905 -0.0119
2 0.1804 0.1863 -0.0059
3 0.1820 0.1519 0.0301
4 0.1724 0.1514 0.0210
5 0.1814 0.1759 0.0055
6 0.1948 0.1301 0.0647
7 0.1863 0.1277 0.0586
8 0.2023 0.1449 0.0574
9 0.1731 0.1189 0.0542

The "inflation factor" (mean difference) is added tothe variance of the
original data set togive an improvd estimate. Inthe present example, the
mean difference in the two variances about regression issmall (0.028) so
adding itto the variance about regression calculated from the original data
(0.184) makes only aminor change. However addingthe correction 1t00.184
gives a value (@12) closer to thatobtained in example 3.3. dhetheless the
best estimate is that of theriginal regression calculation becausethe data of
Example 3.3 were generated from a bivariate normal distributidate that the
bootstrap operation is asampling procedure sdhat there will be small
differences inthe mean differences inrepeat runs. Two further runs with
B=2000 gave mean differences of 0.027 and 0.029.
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Fig. 3.1. Mean differencedetween variancesabout regression calculated from
2000 bootstraps. The differences are between variances about regression
calculated from a regression line based on anindividual bootstrap sample,
with the first variance calculated usingthe original data, ad the second
calculated from the data of the particular bootstrap sample.

It turns out that the correction indicated above is reallyca@rection for
bias. Inasmuch as thelata we usedn this example werenormally distributed,
the variance etimate should be unbiased, and the bootstrap analysis
consequently comes up with a mmor change, as would bexpected with an
unbiased estimator. The data used ere drawn from a bivariate normal
distribution, which isthe basis for thenormal theory confidence limits on a
correlation coefficient, so it is worthwhile to compare (Fig. 3.2) tenfidence
limits on r based onnonparametric bootstrapping with the normal theory
limits in this example. The two different calculations of confidencdimits are
now appreciably closer han they were in Example 24. However, regression
data approximating the bivariate normal distribution are not often
encountered inpractice, because one usually somehow selects the x-values
used, rather han obtaining them at random, asthe bivariate normal
regression theory assumes.
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Fig. 3.2. Distribution of 2,000 bootstrap samples for correlation coefficient
obtained from the data of Example 3.3.Solid lines show approximate 95%
confidence limits based onbootstrapping, while dotted lines show 95% limits
based on normal theory (see Example 2.4).
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3.6 Improved confidence intervals

Efron and Tibishirani (1993:Chap. 14) recommend an improved
bootstrap confidence interval which they call ti@Camethod ("bias-corrected
and accelerated"). These intervals require more @lculations khan the simple
percentile bootstrap confidence intervals. The datafrom Example 3.3 will be
used toillustrate. Two proportions, a1 and ap are calculated, and the total

number ofbootstraps, B, multiplied byhese values.One then orders the B
bootstrap values and takes the B and a2B values asconfidence limits. Thus if

B = 2,000 anda turns out to be 0.0166 as ithe example here, then wkake the

bootstrap value 0.0166(2000) = 33 as theordered value of the bootstrap
replications that gives the lower confidence limit.

Two initial values are calculated. The first is a bias-correction:

A*
" = o108 D)=} (3.7)

here, ®~1( ) indicates the inverse of the cumulative normal distributienhich
can be looked upn tables and isavailable invarious computer programs (in
Microsoft Excel it is "NORMSINV)". The quantity in parentheses has, as
numerator, the number ofbootstrap samples that areless han the parameter
estimate. In the example given below, wensider the correlation coefficients
of Section 35, for which the correlation coefficient calculated from the
original data was r =@®043, so wetally the number ofbootstrap resultsthat
were less han this value and divide by B =2,000, and look up the inverse
cumulative normal value. In this case (Fig. 3.2) there were 942 vdess than
r = 0.9043, so wdook up 942/2000 =0.471 in the inverse normaltables, getting

~0.0728 for "z,

The second value is the€'acceleration”, “a. This is calculated byjackknifing,
(Sedion 3.7) using much the same procedure as inthe cross-validation
example above. We delete each observation in the original data stirnpn and
calculate the correlation coefficient from the renmaining observations. From
the 30 observations tabulated in Example 3.3,we thus get 30 correlation

coefficients, which are here dsignated as/é(i) , where the subscript (i)
indicates that the parameter estimaé\e(here, r) hasbeen calculated from the

original data setwith each observation deleted inturn, and @(.) is used to

indicate the average ofthese 30 values.The estimate of'acceleration” is then
calculated as:

Ao > (6.)-8(0))°
6{=(6)-60)%}°?

where the summations are from 1 to n= 30 in this example. These two
parameters (A 5,’%1) are then used tealculate a1 and ap, but require two more

(3.9)

values for the calculation. These are @ésignated @) and 1" @) and are the
values that cut off a proportion, o, from each tail of the unit normal
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distribution.. For 95% confidence limits, we look uf®kzas 0.975 inthe inverse

cumulative normal tale, getting -1.95996, and useD.025 for #1- a), giving -
1.95996. The calculations then are:

/Z\o + Z(a)
1 - Aa( /20 + z(a))

] (3.9)

01:¢[/20+

and

jmz(l—a)
N
ap=o[ Zo+ 1_a/(zo+z(1—a) )]

where values of®( ) are to be looked upn tables of the cumulative normal
distribution (in Excel, these are available asNORMSDIST). As noted in the
introduction tothis section, the lower Ilimit is the 33d ordered value of the
bootstrapped correlation coefficients (0.825), and the upper limit is a1B =

0.964(2000) giving the 1927th ordered value (0.957).

The calculations are a little onerous to produce the first time, buhéy
are set up in a spreadsheet, then calculations for a new sebrdfdence limits
only take a few changes. One is to insert the new sefaakknife values in the
first column and the second is to change the fraction in eq. (3.7). Ifstmple
size is different,one needs t@xpand orcontract the spreadsheet. Arexample
for the data of Example 3.3 is given below.

The improvement in bootstrap confidence limits in this example is not
large, but suggests that the calculations do result in better bootstrap
confidence limits. Data for Example 3.3 came from a bivariate normal
distribution in whichp = 0.90. From normal theory, 95% confidence limits were
0.803 to 0.954, while the percentile bootstrap limits in one run with B = 2,000
were 0.830 to 0.959. The improved confidence limits were 0.825 to 0.957, giving
a lower limit closer to the normal theory result. Percentile limits vary a little
in successive runs, giving 0.837-0.958 and 0.833-0.960 in two additional runs
with B = 2,000.

Correlations CUBE TERM SQ TERM
1 0.8978444 2.67703E-07 4.1537E-05
2 0.9075823 -3.57065E-08  1.08434E-05
3 0.9083542 -6.71633E-08 1.6523E-05
4 0.8996521 9.97194E-08 2.1504E-05
5 0.8993546 1.2017E-07 2.43518E-05
6 0.9066940 -1.39052E-08  5.78254E-06
7 0.9018049 1.53344E-08 6.17225E-06
8 0.9027515 3.63677E-09 2.36489E-06
9 0.9018945 1.37354E-08 5.73536E-06
10 0.9181345 -2.65399E-06 0.00019169
11 0.9038609 7.86151E-11 1.83515E-07
12 0.9118957 -4.40089E-07  5.78576E-05
13 0.9013883 2.4416E-08 8.41621E-06
14 0.9008332 4.12818E-08 1.19446E-05
15 0.9065879 -1.2145E-08 5.28363E-06



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
AVERAGE

0.8874195
0.9044161
0.8932690
0.9068001
0.9205568
0.9029564
0.9045651
0.9048018
0.9130072
0.9019668
0.9047293
0.9014553
0.9040066
0.9046723
0.9054246
0.9042893

Z(0)-HAT
ACCELERATION

Z(0)-HAT+Z-ALPHA
1-ACCEL(Z(0)-HAT+Z-ALPHA)

RATIO
ALPHA1

Z(0)-HAT+Z(1-ALPHA)
1-ACCEL(Z(0)-HAT+Z(1-ALPHA)

3.7 The jackknife

The jackknife technique, as noted in thetroduction
dates bootstrapping,and wasoriginally derived (Quenouille(1956))
biases in anestimator. The technique
data set,one simply

an original

RATIO
ALPHA2

calculates the statistic ofinterest
in the calculations for improved confidence limits above, gettin@(i) =SX(i)),

4.80101E-06
-2.03529E-12
1.3384E-06
-1.58286E-08
-4.30489E-06
2.36797E-09
-2.09626E-11
-1.34558E-10
-6.62566E-07
1.2528E-08
-8.51567E-11
2.27629E-08
2.26062E-11
-5.61539E-11
-1.46324E-09
-1.44489E-06

-0.07276
-0.0059377
1.88716
1.0112055
1.8662478
0.9635494
-2.03276
0.987930
-2.057595
0.016569

0.000284591
1.60602E-08
0.000121448
6.30419E-06
0.000264632
1.77658E-06
7.60263E-08
2.62587E-07
7.6001E-05
5.39412E-06
1.93559E-07
8.03189E-06
7.995E-08
1.4664E-07
1.28887E-06
0.00118043

1.95996

1927.0988
-1.95996

33.139

3.9

SUMS

toChapter 2pre-

toevaluate

isvery simple and easy toapply. Given

leaves out each observation
onthe renaining observations,

inturn and

asvas done

where x(j) is the vector ofobservations vth the th observation removed, and
s() denotes some statisticalculated from these observations. The bias estimate

is calculated as:

blasjack = (n-1)(8(.) - §)

(3.10)

N N AN . . .
where 0 (.) denotes the mean of theéd(j) and 6 is the statistic estimated from
the original data. The jackknife estimate of standard error is:

We can illustrate the calculations with
the 1Ooriginal

following

table shows

observations

A feck = [nn_l > ( é\(i) ) é\(_) )2]112,

(3.11)

thedata of Example 2.1. The
andthe 10 jackknife
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samples created byropping each observation inturn. If we consider the
mean as thestatistic to bejackknifed, ten the bias etimate from eq.(3.10)
turns out to be zero,inasmuch asthe mean of the original observations
necessarily equals the grand mean of the jackknife samples.

Orig. Jackknife samples

data 1 2 3 4 5 6 7 8 9 10
13 13 13 13 13 13 13 13 13 13
106 106 106 106 106 106 106 106 106 106
203 203 203 203 203 203 203 203 203 203
131 131 131 131 131 131 131 131 131 131
160 160 160 160 160 160 160 160 160 160
8 8 8 8 8 8 8 8 8 8

67 67 67 67 67 67 67 67 67 67
61 61 61 61 61 61 61 61 61 61
11 11 11 11 11 11 11 11 11 11

301 301 301 301 301 301 301 301 301 301
Ave. 116.4 106.1 95.33 103.3 100.1 117 110.4 111.1 116.7 84.44

Eq. (3.11) gives Asgck = 30.15, while a bootstrap estimate of standard error

[eq.(2.1)] is 28.70, and the standard error of the original data is also 30.15, as it
should be in this case, because the jackknife standard error formula gives the
same result for the standard error of a mean.

Exanmpl e 3.4 Jackknifing a regression equation

Gizzly bears are very difficult to census due to the fact that
they tend to stay in heavy cover when food conditions are good and are
thus not visible fromthe air. A so, they range very widely, are
difficult (and sonewhat dangerous) to trap and are not nunerous. Adult
femal es with cubs-of-the-year nmay tend to spend nore tine in the open
than other bears, and such famly groups can be approximately identified
by group size, age of cubs, location, etc. Consequently the only | ong-
termindex of abundance for bears in Yell owstone has been an annua
"count" of such fam |y groups. The index is quite variable, so it is
essential to |learn as nuch about the effect of variability as possible,
and to ook for ways to inprove the index. For further study here,
| ogarithns of the index count are used because a linear relationship
woul d result if the counts are directly proportional to popul ation
abundance. A plot of the data (Fig. 3.3) shows the substantia
variability.

The jackknife, the bootstrap, and cross-validation can be used to
study the index. To use the jackknife approach, one proceeds as in the
exanpl e shown in Section 3.7. There are 19 annual val ues of the index,
so the original data are copied 19 tinmes, and each of the paired itens
(year and In count) is removed in turn and placed at the top of the
table. The gaps in the nmain body of data are then filled by nmoving the
data below up one cell. For each of the paired colums of data, one then
estimates a slope (using the SLOPE function in EXCEL) and cal cul ates the
intercept fromy and x neans. This thus gives the basis for a regression
line at the bottom of each set of data. This regression line is then
used to conpute an estimate for the m ssing point (using the x-value at
the top of the table) and that prediction is placed bel ow the value |left
out located at the top of the table. The resulting 19 data pairs then
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provi de data for calculation of CVE by eq. (3.6). The first two col ums
of a calculation appear in a table bel ow

'_
z
)
O
@)
z 1
- 169 y = - 71721 + 3.7518e-2x R"2 = 0.422
1.4-_
1.2-_
1.0 T T T T T T T T T T T T T T T T T 1
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994
YEAR
Fig. 3.3 Index of grizzly bear abundance in Yell owstone Nationa
Par k.

The slope estimates at the bottomof the table are used to
jackknife the data for calculating a standard error fromeq. (3.11)
which turns out to be 0.0104. This is perhaps nost useful if divided by
the jackkni fe nean, giving a coefficient of variation of 0.28,

i ndi cating the considerable variability in the data. The data can al so
be used to calcul ate the jackknife bias estimate of eq.(3.10), which
appears to be very small. The operation can be described in steps as
fol | ows:

(1) Duplicate the two colums of data (x and y variables) n tines,
where n is the nunber of observations avail able.

(2) Remove each value in turn and put it above the table of
val ues, |eaving space for a predicted val ue.

(3) Move up the data to close the gaps.
(4) Calculate slopes and x and y nmeans for each col um.

(5) Use this regression data to calculate a predicted value for
the x-value of the itemrenoved fromthat columm and place the
predicted val ue bel ow the renoved val ue. The squared difference is
then sumred and divided by n to cal culate CVE

(6) Use the cal cul ated sl ope values to produce jackknife estimates
of standard error and bi as.

Al'l of the above provides sonme information on how an i ndex
behaves. It is, however, nore useful in the situation where we have
several possible candidates for an index, as the estimates of bias and
CVE (and possibly other statistics calculated for the data) can be used
to decide which of the candidates mght give the best notion of trends
in the bear popul ation, which is of nmjor inmportance in managi hg an
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i mportant species. An inprovenent in the index is avail able by way
auxiliary variables that provide a correction for the variation in
visibility of bears, which presumably is at |east partially responsible
for fluctuations in the number seen fromyear to year. This inproved

i ndex was described by Eberhardt et al.(1999).

Table of first few colums of data from Jackknifing bear index.

LEDT OUT 2. 8332 1 2.5649 2
PREDI CT 2. 3140 2.4304
DEV SQ 0. 2696 0.0181
ORI G NAL DATA
LN COUNT
Y X Y X Y X
1976 17 2.8332 1 2.5649 2 2.8332 1
1977 13 2.5649 2 2.1972 3 2.1972 3
1978 9 2.1972 3 2.5649 4 2.5649 4
1979 13 2.5649 4 2.4849 5 2.4849 5
1980 12 2.4849 5 2. 6391 6 2.6391 6
1981 14 2.6391 6 2.3979 7 2.3979 7
1982 11 2.3979 7 2.5649 8 2.5649 8
1983 13 2.5649 8 2.8332 9 2.8332 9
1984 17 2.8332 9 2.1972 10 2.1972 10
1985 9 2.1972 10 3.2189 11 3.2189 11
1986 25 3.2189 11 2.5649 12 2.5649 12
1987 13 2.5649 12 2.9444 13 2.9444 13
1988 19 2.9444 13 2.7726 14 2.7726 14
1989 16 2.7726 14 3.2189 15 3.2189 15
1990 25 3.2189 15 3.1781 16 3.1781 16
1991 24 3.1781 16 3.1355 17 3.1355 17
1992 23 3.1355 17 2.9957 18 2.9957 18
1993 20 2.9957 18 2.9957 19 2.9957 19
1994 20 2.9957 19
MEANS 2.75 10.0 2.75 10.5 2.76 10.4
SLOPES 0. 0375 0. 0457 0. 0394
I NTERCEPTS 2. 3776 2.2683 2. 3516
S.S. CF SLOPES 0. 0001 0. 0000

3.8 The Monte Carlo method

In many situations, it is desirable to seek a waych@ck onthe validity
of possible estimators. Ithe stochasticprocess leading tothe dataunder study
can be modelled in aealistic manner, khen it is usually possible totest
estimation and analysis methods by"Monte Carlo" simulations. Many detailed
papers and a sizablenumber ofbooks deal \Wth such approaches, andll that
will be attempted here is to provide a sketch tbe method, and a simple
example. Exercise 1.16.6 discusses simulation of a continuous frequency
distribution, the exponential distribution. The underlying model for survival
times is, in fact, the exponential, although survival may also need to be
described bymore complex mdels. Given away to generate asample from a
plausible distribution, one can then use such datatetst estimation oranalysis
schemes.

For aconcrete example, weconsider the percentile confidence limits
discussed inChapter 2,and demonstrated inFig. 2.2, and ask whether these
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limits are valid. This question isusually discussed in terms ofoverage. For
convenience, consider 95% confidence limits. These aredescribed aslimits

that should includethe true but unknown mean in95% of avery large series

of repetitions ofthe same process from which a given observedsample is
generated. Note that nothing is said about aparticular case -- itis only the

long-run average that we can depend on. If confidence limits are properly

constructed, hen they should "cover" the (unknown) true mean 95% of the

time. If we assumethat observed survival time data comefrom an exponential

distribution, ten wecan generate aery large number ofsamples of n =20
"observations", calculate bootstrapconfidence limits from these samples, and
see how wellthey "cover" the true mean. In thiscase, we canknow the true

mean, inasmuch as it can lalculated for the exponential distribution, E(x) =

1/8. Using B = 0.01 results in an expected ("true") mean g %/ 100.

A BASIC program (Program EXPON SMUL) was used tostudy the
confidence limits. It turnsout that 1,000 simulation runs with 1,000 bootstraps
for each sample of n= 20 yields 906 cases where the calculated percentile
limits included the true mean of 100, whereas one would expect 950 ¢aséde
the limits for a true 95% level of signficance. Note that this result (906 of
1,000) is subject tosampling error; a binomal calculation gives v(p) =p(1l-
p)/1000 where p =0.95, sothat two standard errors on will be about 0.013.
Consequently, it wold appear that the bootstrap "coverage" isignificantly
short of the expected 95%. Bblnetheless a nominal91% isn't too bad for
confidence limits. Fig. 3.4 provides an example of coverage from this study.

The exponential distribution is sharply skewed and the sandard
deviation equals the mean sdhat the survival time tlus generated ishighly
variable. For an alternative, wean run the MonteCarlo study wing normally
distributed variables with the @ame mean (100) and asmaller sandard
deviation (10). This can be done by using theéBox-Muller approximation
(Bratley etal. 1983) togenerate unit normal random variables, replacing the
exponential in aBASIC program. This generates two approximately normal
random variables with zero mean and variance of unity from two uniform
random variables,and these are hen transformed tohave standard deviation
of 10 and mean of100. Running 1,000 simnulations each using 1,000 bootstraps
on samples of n =20 from the normal distribution gives coverage of 931,
appreciably closer to the expected 95%.
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Fig. 3.4. An example of "coverage" for the simulation to test bootstrap
percentile limits on sinulated data from an exponential distribution. The
figure shows confidence limits for a sample of @servations out of the 1,000
simulations used to testconfidence limits calculatons (with 1,000 bootstraps
per sample of 2@bservations). The dottedline shows theposition of the true
mean of 100, while squaresepresent upper 95% confidence limits and circles
the lower limits. Linesconnect the limits for the three caseswhere the limits

did not include the true mean. In this sample, coverage was 17/20 = 0.85.

Inasmuch as weare dealing with means, the usual approach to
confidence limits wuld be tocalculate avariance from the original data, and
obtain confidence limits with a multiplier from thé-distribution. Such results
can easily be simated, using the samemethods for generating exponential
and normal random variables. Program T SIMUINORM was used tosimulate
samples and confidence limits from the normal distribution, and the same
program was used \Wth the exponential generator. Rdsu using samplesizes
of n =10, 20,and 30appear inthe following table. These results suggestthat
constructing confidence limits in the usual manner from exponential data
does a little better job than bootstrapping, andfor data from a normal
distribution the limits are within sampling error ofthe expected 95%, Wwile
bootstrapping falls a little short. One would not, oburse, use bootstrapping to
obtain confidence limits on means. It isbest reserved for situations where
there is no convenient theoretical approach.

Sample Exponential simulation Normal simulation

size Bootstrapping Usual limits Bootstrapping Usual limits
10 837 900 904 944
20 906 923 931 941
30 927 921 933 953

3.9 The delta method

The delta method is auseful adjunct tobootstrapping. Ithas been used
for many years toapproximate the variance ofcomplex functions ofrandom
variables. It is obtained from a Tayloexpansion ofthe function in which the
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second degree termsare retained, and rearanged torepresent variances of
the random variables. The expression is as follows:

VIgO)T= 5 V(3D +25 cov(ox )G () (3.12)

<]

where V[g(x)] represents the variance ofsome function, gk), where X is a
vector of random variables, X,x2, ... ,X%. V(Xj) denotes the variance of the

variable x, which is multiplied by the square of the partiderivative of g(x).

Covariance terms are calculated for those cases where i<j. In many cases, it
may be that therandom variables are independent, sahat the covariance
terms can be assumed to kero, and theright-hand portion of eq.(3.12) can
then be dropped.

Bootstrapping can be used tealculate avariance for g(x) without any
need to calculate varianceand covarianceof the individual random variables
or to obtain partial derivatives. The delta method becomesa valuable adjunct,
however, when it igpossible to designthe study inorder tominimize V[g(x)].
In practice, V[g(x)] may be appreciably larger than is desirable, and we may
wish to design anew study with larger samples (or to supplement the existing
samples). Inthis case, it isessential to beable to determine the effect of
increasing the sample size®r individual random variables. The deltamethod
provides a way to calculate the effects ofianging sample sizes onthe overall
variance.

Exanmple 3.5 Application of bootstrapping to a conplex function.
ot ai ning a variance for the Lotka-Leslie nodel provides a good exanple
of the utility of bootstrapping. The underlying equation for this nodel
is:

1XEAX Iy my (3.13)

Here, A represents the rate of change of an age-structured popul ation
havi ng age-specific survivorship rates |x and age-specific reproductive
rates nx.- The general nodel for the Lotka-Leslie function does not have

a "closed-fornt solution. That is, there is no way to wite eq.(3.13) in
alinear form that is to provide an expression stated as A =¢g(x). It is
t hus necessary to solve eq.(3.13) for Aby an iteritive procedure, i.e.,
by varying values of Auntil one satisfies the equation. Because there is
no linear expression for a solution for A, devel oping an expression for
the variance beconmes very difficult. Bootstrapping then provides a
conveni ent approach. One only needs to set up the data on Iy and ny in
tables, sanple these tables of data with replacenent, and calculate
values of A from the sanples. The percentile nmethod then provides
conveni ent confidence limts.

In nany instances, the sanples available for calculations are too

snmall to make calculations from eq.(3.13) feasible. An alternative nay
then be needed. A useful approximation (Eberhardt 1985) is:

A lim-§ w-a-1 _ (3.14)
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Here, a is the age at which full reproductive rate is achieved, |4 is
survival frombirth to age a, s is survival beyond that age, and wis an
age at which calculations are truncated in order to conpensate for the
effects of senility. This equation again nust be solved by iteration,
and can readily be bootstrapped. The delta nethod can be used to study
the components of wvariance and thus to deternmine the effect of
increasing sanple sizes for the several conponents on the variance
estimate for A. In several exanples, the delta nethod gives very nuch
the sanme variance estimate as bootstrapping. Another benefit of the
delta nethod calculations is that the partial derivatives serve to
indicate the relative inportance of the several conponents, indicating,
for exanple, that small changes in adult survival have the maxi mum
effect on A. Because there is no linear solution for A,the delta nethod
has to be applied by wusing inplicit differentiation. Solutions
appropriate for eq.(3.14) appear in the follow ng references, which also
give details and result of the application of bootstrapping to this
conplex function. Calculations for grizzly bears appear in Eberhardt et
al. (1994), for sea otters in Eberhardt (1995), for nonk seals in
Glmartin and Eberhardt (1995), and for manatees in Eberhardt and O Shea
(1995). Sel ected exanpl es appear in Chapter 11.

3.10 Exercises

3.10.1 Inasmuch as bootstrapping is a sampling procedure, additional runs of B
bootstraps will give slightly different results, even if B is large.Conduct a
bootstrapping check on the data of Example 3.1 to see how yourad@gstment
compares \th the results given there.Use B=2000. Do 10trials and record
results on a sumary sheet(don't forget touse PASTESPECIAL and VALUES or
you may get astatement like “Circular References” or“Link to another
spreadsheet”). This should show that the bias isonsistent, and that the
corrected value is a muchbetter estimate othe true value. However, when
there is an unbiased estimateased ontheory (as inthis case), oneobviously
should use that value. The bias estimaseimportant only when you don't have
an estimate that is known to be unbiased (which isften the case with
ecological data, even though it might not be a widely recognized fact). Also
number the observations serially (1-10) and calculate the correlation
coefficients.

3.10.2 Bias corrections.

Use the data of Example 2.3 (calculations in Exercise 2.10.4) to further explore
bias corrections. In that example we used regressions of the natural logarithm
of number of survivors (Fig. 2.5) on year to estimate a survival rate (slope of
the regression line) and then transformed it back to an annual rate by
calculating y=exp(b). Bootstrap confidence limits were obtained and also
transformed back to annual rates. Use eq.(3.2) to examine the bias

in transforming back. When there is an evident bias, one should examine the
confidence interval on the estimate to see if the bias is large relative to the
confidence interval.

biag =8 *() - @) (3.2)
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3.10.3 Make a frequency distribution of z (eq.(2.9)) using the correlation
coefficients computed in exercise 3.10.1. Does this look like a normal
distribution as assumed in calculating confidence limits under the usual
theory? Compare your results with Exercise 2.10.5.

3.10.4 The regression bootstrap of Example 2.2 used parametric bootstrapping
in which deviations from a model fitted to the original data are bootstrapped.
In exercise 2.10.7 we tried bootstrapping the x,y pairs directly

(“nonparametric” bootstrapping) and got some strange-looking results.
However, larger samples (more x and y values) appear to give results
comparable to parametric bootstrapping. Efron and Tibishirani warn that the
parametric approach is “model-dependent”, i.e., if the model is wrong, the
results may be doubtfully useful. Hence, its worthwhile to repeat the exercise
using the data of Example 3.3. Doing this directly is cumbersome, so it is best to
use the program furnished in the Appendix. Compare your results with the
slope and confidence intervals given by the regression program in EXCEL. This
exercise is worthwhile in that ecologists use regressions with smallish samples
and the independent variables are not always known with certainty. There
don’'t seem to be any guidelines as to sample sizes in such cases, so its wise to
use both parametric and nonparametric approaches and to check for bias (Eq.
(3.2)) if you want to be comfortable with your results. The frequency diagrams
of Exercise 2.10.7 were distinctly bimodal, making it clear that the
nonparametric approach is not advisable with only 10 pairs of observations.

3.10. 5 Example 3.4 gives the approach to jackknifing a regression line in
which logarithms of data on an index of bear abundance are fitted by linear
regression (Fig. 3.3) and the fit examined by cross-validation, with a check on
bias from eq.3.10. Complete the analysis just as in Example 3.4. Compute the
cross-validation error (CVE), jackknife standard error of the slopes, and
Biasjack of the slopes. Compare the jackknife standard error with that of the
slope computed with the usual regression analysis (given in EXCEL tools
menu). Also compare CVE with the residual mean square of the regression
analysis.

3.10. 6 Jackknifing was used in Example 3.10.5 because it is fairly easy to
apply and we could compute CVE of eq. (3.6) in the same operation. However,
bootstrapping has some advantages, and likely should be used to estimate bias
and confidence limits whenever it is feasible. Use the data of Example 3.10.5 to
conduct parametric bootstrapping to compute the bootstrap bias estimate of Eq.
(3.2) and 95% confidence limits on the slope. Use 1,000 bootstraps and
parametric regression bootstrapping (for convenience in calculations using
EXCEL - with 19 observations, | would be inclined to try both parametric and
non-parametric approaches). The nonparametric regression bootstrap can
readily and quickly be computed from a program in the Appendix.

3.10.7 The approach of 8ction 3.5 is most readily calculated by using a
programming language. However, it fieasible to dothe calculations inEXCEL

if one is willing to devote several hours to theb. A program inthe Appendix

will do the job in short order and should be used to repeat the resul&eaofion

3.5.
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